

1

Arduino

Advanced Projects

Created as a companion manual to the Toronto Public Library Arduino Kits.

Arduino Advanced Projects

Copyright © 2017 Toronto Public Library. All rights reserved.

Published by the Toronto Public Library.

2

Table of Contents

TABLE OF CONTENTS ... 2

PREFACE .. 3

ARDUINO UNO TOUR ... 5

GETTING TO KNOW YOUR BREADBOARD ... 6

SAFETY TIPS .. ERROR! BOOKMARK NOT DEFINED.

INTRODUCTION .. 10

CONTROLLING A SERVO WITH A POTENTIOMETER .. 16

CREATING A 30 SECOND COUNTDOWN TIMER .. 20

WHAT IS AN H-BRIDGE? ... 26

H-BRIDGE CONTROLLED BY AN ARDUINO .. 28

H-BRIDGE USING POTENTIOMETER.. 31

RECOMMENDED RESOURCES .. 37

3

Preface

Thank you for borrowing Toronto Public Library’s Arduino Kit. Please return this kit to

the Digital Innovation Hub from which it was borrowed.

4

Borrowing Arduino Kits

 Arduino Kits are available to Toronto Public Library customers with a valid Teen

(13-17), Adult – Under 25 (18 – 24), or Adult (25+) library card.

 Holds cannot be placed on the Arduino Kits.

 You can only borrow one Arduino Kit at a time. Each kit can be borrowed for 21

days and cannot be renewed.

Fines Per Day and Maximum Fines for Arduino Kits

CARD TYPE FINE AMOUNT

PER DAY

MAXIMUM YOU WILL

BE CHARGED FOR

EACH LOAN PERIOD

Adult $0.35 $14.00

Adult Under 25 (18-24) $0.15 $6.00

Teen (13-17) $0.15 $6.00

 If you lose an Arduino Kit, you will be charged the purchase price of the Arduino

($50). The library does not accept a replacement Arduino or an item of equal value.

 If the Arduino Kit is overdue by more than 40 days, the library considers it lost. If

you find the kit within 6 months of paying the replacement cost you can get a

refund, minus any overdue fines so please keep your receipt.

 Please report damaged equipment or missing parts to the Digital Innovation Hub

staff from which it was borrowed. Damaged Arduino boards and kits are subject

to replacement purchase fees.

5

Arduino Uno Tour
Time Required: 10 minutes

Spend a few moments looking at the diagram below and compare it to the Arduino

included in your kit.

 The Arduino has been labeled to help you learn all the different connectors and parts.

6

Power rails

All the power rails have invisible wires

under that run vertically.

Connectors
Five holes in each of

the horizontal rows

are connected.

Getting to Know your Breadboard
Time Required: 20 minutes

Video resources about breadboards: http://goo.gl/6HPHbg

In order for us to connect our tiny components together, we need our breadboard. A

breadboard is great for prototyping since it does not create a permanent connection

between components like soldering does. Everything is held together by friction when

you insert them into those tiny holes inside your breadboard.

Remember: If you have any questions, or need some extra

help, feel free to visit a Digital Innovation Hub at the

Toronto Public Library for classes or assistance.

What a breadboard looks like if we could see the wires under the breadboard

7

The previous page is an example of how a breadboard usually looks; on the right is how

a breadboard would look if we could see the wires that connect all of the holes together.

Those hidden wires are used to connect all your components to each other while you

prototype.

Take a look at your breadboard. You may have noticed that the breadboard holes are all

labeled A to J (vertically) and from 1-30 (horizontally). This is used to indicate where to

place your components.

Throughout this guide, we will be asking you to place your components in very specific

holes within your breadboard. For example, we might ask you to put a wire into hole 3E.

Now is the time to get familiar with the layout of your breadboard.

8

Safety Tips

Toronto Public Library’s Arduino Kits use low voltage electricity and are not inherently

dangerous. However, safety is always important when working with electrical circuits.

Please follow the safety tips and instructions in this manual at all times.

Expert Tip: Always treat electronic projects as if they could

have potentially dangerous voltages.

Each project has been planned and mapped out for you. Please take the time to read and

thoroughly review the project instructions from beginning to end before you begin.

Ensure that wires are connected accurately and in accordance with the diagrams

provided. Not following the instructions as specified may result in personal injury or

damage to the equipment.

Expert Tip: Turn off all power sources before modifying the

circuit. Keep your Arduino unplugged while you are

connecting wires and parts. Only connect it to the computer

after your setup matches the diagram provided.

Keep your work surface clear when using this kit and maintain an orderly and safe work

environment. Keep food and drinks away from the work area while working with your

Arduino kit. Always unplug the Arduino when not in use. After using the kit, return all

the parts to their proper storage place.

Expert Tip: Place the Arduino on a non-metal surface and

refrain from working on metallic surfaces.

9

Warnings

 This kit is not a toy and is not appropriate for small children. Small parts may present

a choking hazard. Not for children under 3.

 Avoid touching the exposed end of ground and power wires when connected to the

Arduino.

 Use only the materials provided in the Arduino Kit.

 Do not make alterations or perform major repairs on the Arduino Kit.

 No soldering with the TPL Arduino kit.

 Do not use lithium ion batteries, they may explode when shorted

 Do not use on metallic surfaces, such as your Macbook. Place the Arduino on a non-

metal surface and refrain from working on the surface of your Macbook.

 The library is not responsible for damage to any equipment and hardware used with

the kit, including personal computers, laptops or tablets.

 Unplug the Arduino when not in use.

 Turn off/disconnect all power sources before modifying a circuit. While you’re

connecting components, keep your Arduino unplugged. Only connect it to a computer

or power source after the circuit is complete.

10

Introduction

An Arduino is a microcontroller; a small, simple computer. It is designed specifically for

beginners who are new to coding and electronics. You can learn more about the Arduino

at https://www.arduino.cc/en/Guide/Introduction.

There are thousands of projects you can build with an Arduino.

Parts in This Kit

You assembled kit includes all the parts you’ll need for the Arduino projects outlined in

this manual. When you’re done with your projects, please return the parts to their

proper slots, as indicated in this diagram, for the next person to enjoy.

There are different types of Arduinos. This kit uses a blue

Arduino Uno board. The different parts on the Arduino are

labelled in white.

11

The USB cable is used to connect the Arduino to your

computer.

The breadboard lets you build circuits. It has a series of holes

where you can insert wires to create circuits. The magic of a

breadboard is that it’s reusable, and you don’t need to solder

(permanently joining components together to form a circuit

by melting metals).

12

Jumper wires are used to create electric circuits and can be

inserted into the breadboard.

A H-Bridge IC Chip (model L293NE) is an electronic

integrated circuit chip that allows a voltage to be applied

across a load (like a motor) in opposite directions. These are

used in robotics so that you can control the direction of two

motors independently.

13

DC Motor uses electricity to convert it to rotational

mechanical energy. Connect the positive and negative to

power and it will spin. Reverse the positive and negative pin

to reverse the power flow and it will spin the opposite

direction.

Potentiometers are a manually adjustable variable resistor

with 3 terminals. Two terminals are connected to both ends of

a resistive element, and the third middle terminal connects to

a sliding contact, called a wiper, moving over the resistive

element. The position of the wiper determines the output

voltage of the potentiometer.

14

Servo Motor can be commanded to rotate to a specific angle.

These motors cannot rotate continuously and only have a

movement of 180 degrees.

15

Part Inventory for the Advanced Kit

1x Arduino

The Arduino is the

microcontroller and

brains of our project.

It stores programs

and processes inputs

and outputs.

1x Breadboard

The breadboard is

used to temporarily

connect multiple

components and

wires together during

prototyping.

16x Jumper Wires

Jumper wires connect

the components

completing a circuit.

Note: The colour of

the wires do not

matter when building

the projects.

1x Pushbutton

When you push the

button, it completes

the circuit.

1x H-Bridge IC

chip

Used to control the

direction of two

motors.

1x Potentiometer

Can be used to detect

the position of a knob

when connected to

the Arduino analog

input pins.

1x DC Motor

It is your standard

DC motor. It spins

when you apply

power.

1x Servo Motor

Servo motor can be

commanded to rotate

to a specific angle (0-

~180 deg).

16

Controlling a Servo with a Potentiometer
Time Required: 25 minutes

In this project, we will be using a potentiometer to control the movement of our servo

motor. When we twist our potentiometer knob, the servo will also rotate approximately

the same amount. Remember, it doesn’t matter what color the wires are in the diagram

compared to the ones you use.

 Potentiometers are like a dynamic resistor, as you twist, the resistance value

changes (this will make the voltage change from 0-5v). These changes in

resistance is what our Arduino will read and convert into a number between 0-1023.

What are the pins on the included

Potentiometer?

A servo motor, is a special type of motor that can be used to rotate

precisely. There is a sensor inside the motor that keeps track of how

much it rotates. This allows us to tell the motor to rotate by degrees and it will stop at

the correct location.

Positive Power

Ground

Output: This pin can be connected

to an Arduino. The Arduino will

read the resistance value from the

potentiometer.

17

Required Components

1x Arduino 1x Breadboard

3x

Jumper

wires

1x

potentiometer
1x Servo Motor

Wiring

18

Diagrams for this project

What are the pins on

our Servo Motor?

Ground

Signal (tells

Servo where

to move)

Power

(4.8-6v)

19

Code

Line 1. #include <Servo.h>
Line 2.

Line 3. const int servoPin = 2;
Line 4. const int userInputPin = A0;

Line 5.

Line 6. Servo myservo;

Line 7. int pos = 0;
Line 8.
Line 9. void setup() {

Line 10.
Line 11. myservo.attach(servoPin);

Line 12.
Line 13. pinMode(userInputPin, INPUT);

Line 14.

Line 15. }
Line 16.

Line 17. void loop() {
Line 18.

Line 19. pos = analogRead(userInputPin);
Line 20.
Line 21. pos = map(pos, 0, 1023, 0, 180);

Line 22.
Line 23. myservo.write(pos);

Line 24.
Line 25. delay(100);

Line 26. }

Include the ability to use the Servo motor library (enables us to use the servo commands).

Create a new servo called myservo. We give it a name since we could control more than one servo at a time.

Create two constant integer variables. Variable servoPin will store the number

2, and userInputPin will store the number A0.

Create an integer variable with the value of 0. This will be used to store the position the servo should

move to.

Tell the Arduino to use (attach) the servoPin (pin #2) to the servo called “myservo”.

Set the potentiometer that is connected to userInputPin (pin #A0) as an

INPUT.

Analog read the inputPin (A0), and store the value in our variable

called pos.

Map the raw sensor data (our sensor gives us a value between 0-1023) to a

value between (0-255) and store the converted value back to the variable

pos.

 Move the servo motor (called myservo) with the calculation we did

previously stored in the variable servoPos.

 Delay (pause) for 100 micoseconds. This will allow the servo motor to go

to its position before being told to move again.

20

Creating a 30 Second Countdown Timer
Time Required: 40 minutes

In this project, we will be using a servo motor as a countdown timer. The Servo motor will rotate 3 degrees of movement

for every second for a total of 30 seconds. We have a button that is connected to the Arduino so we can restart the 30

second timer when needed.

Required Components

1x Arduino 1x Breadboard 5x Jumper Wires
1x

Pushbutton
1x Servo Motor

21

Wiring

22

Code

Line 1. #include <Servo.h>

Line 2. Servo myservo;

Line 3. const int servoPin = 9;

Line 4. const int buttonPin = 2;

Line 5. int servoPos = 0;

Line 6. int timerCurValue = 0;

Line 7. const int timerSetValue = 30;

Include the ability to use the Servo motor library (enables us to use the servo commands).

Create a new instance of a servo called myservo. We give it a name since

we could control more than one servo at a time.

Create a constant integer variable called servoPin with a value

of 9 (the pin the servo is using to be controlled).

Create a constant integer variable called buttonPin with a

value of 2 (the pin the button is connected to).

Create an integer variable called servoPos with a value of 0.

This is used to store the position the servo should go.

Create an integer variable called timerCurValue with a value

of 0. This is used for how much time has elapsed.

Create a constant integer variable called timerSetValue with a

value of 30. This is used for how long we want the timer for.

23

Line 8. void setup() {

Line 9. myservo.attach(servoPin);

Line 10. Serial.begin(9600);

Line 11. myservo.write(servoPos);

Line 12. pinMode(buttonPin, INPUT_PULLUP);

Line 13. delay(2000);

Line 14. }

What is INPUT_PULLUP?

When setting an Arduino Uno pin as INPUT_PULLUP this

activates the internal 20kohm resistor in the processor. This allows us

to connect a button to ground, then to the pin we want the button to

be connected to on the Arduino without using a resistor. This

however will reverse the logical of reading the button compared to

using INPUT. When the button is not pressed the pin will read

HIGH, and when the button is pressed it will read LOW.

Tell the Arduino to use (attach) the servoPin (pin #9) to the

servo called “myservo”.

Setup serial monitor at a baud rate (speed) of 9600.

Set our servo (myservo) when the arduino turns on or restarts

to the position at 0 degrees from the variable servoPos.

Set out button that is connected to buttonPin (pin #2) as an

INPUT_PULLUP.

Wait two seconds before running the rest of our program. This will give our servo a

moment to move to its 0 degree position if it needed to move.

24

Line 15. void loop() {

Line 16. if(digitalRead(buttonPin) == LOW) {

Line 17. timerCurValue = 0;

Line 18. Serial.println("*** TIMER RESTARTED ***");

Line 19. }

Line 20. servoPos = timerCurValue * 3;

Line 21. Serial.print("Timer: "); Serial.println(timerCurValue);

Line 22. Serial.print("Position: "); Serial.println(servoPos);

Read if the button is pressed. Since the

buttonPin (pin #2) is using INPUT_PULLUP

instead of INPUT, the button pin will read LOW

when pressed. When it is pressed reset the timer

back to 0 and output the text “*** TIMER

RESTARTED ***” in the serial monitor.

The timer starts at 0. Use the current elapsed time, multiple it by 3 and

store this calculation in the variable servoPos. This means for every second

the servo will move 3 degrees.

Output through the serial monitor

the current elapsed timer from the

variable timerCurValue and output

the current servo position from

the variable servoPos.

25

Line 23. Serial.println();

Line 24. myservo.write(servoPos);

Line 25. if (timerCurValue < timerSetValue) {

Line 26. timerCurValue = timerCurValue + 1;

Line 27. }

Line 28. delay(1000);

Line 29. }

Output a line break to our serial monitor. This is only to

make it easier to read the outputs and is for aesthetics.

Move the servo motor (called myservo) with the calculation

we did previously stored in the variable servoPos.

If the current time (using our variable timerCurValue) is less

than the set timer time (using the variable timerSetValue

which is 30 seconds), increase the current time by one.

Wait one second before looping again. This makes it take one

second to increase the timerCurValue variable by one and

move the servo 3 degrees every second.

26

What is an H-Bridge?
Time Required: < 15 minutes

An H-Bridge is an electric integrated circuit that allows the ability to control up to two motors. These two

motors can be independently controlled what direction it will spin. This could allow us to create a robot for

example that could move forwards, backwards, turn left and turn right and have our Arduino program

those movements. We are just using half the chip for all the projects, most of the pins on the left-hand side of

the chip are for controlling a second motor. See the diagram on the next page for what each pin does from the H-Bridge.

27

5v to power the IC chip.

Positive voltage to power the motors

5-36v up to 600mA per motor.

Ground connectors for the IC chip.

Only one needs to be connected.

When you send 5v to this pin, it will allow the motor

connected on the right side of the h-bridge to be enabled.

Connect the

positive and

negative pins from

the motor to the

output.

Input pins are used to control what direction the

motor will spin. When you send 5v to input 4 for

example only, then the motor will spin one

direction. When you send 5v only to input 3

instead, the motor will spin the other direction.

This indented semicircle is used to

indicate the top of the IC H-bridge chip

28

H-Bridge Controlled by an Arduino
Time Required: 30 minutes

In this project, we will be using an H-Bridge (Model L293D) connected with our Arduino to control the motor so it can

rotate clockwise or counter clockwise.

Pin #9 from our Arduino must output HIGH (output 5v) to enable the h-bridge to work. Pins #11 and pin #10 is used to

control which direction the motor will turn. If you have pin #11 high (output 5v) the motor will spin one direction, while

if you output high on pin #9 it will spin the other direction. The motor will not turn if both pin #10 and pin #11 is high

(outputting 5volts) since you are telling the h-bridge to go clockwise and counter clockwise at the same time.

This project will rotate the motor clockwise for 6 seconds, stop spinning the motor for 2 seconds, rotate the motor

counterclockwise for 6 seconds, stop the motor for 2 seconds and then repeat forever.

Required Components

1x Arduino 1x Breadboard
14x Jumper

Wires
1x H-Bridge 1x DC Motor

29

Wiring

This indented semicircle is used to indicate the top of the IC

H-bridge chip. Make sure you put in the h-bridge correctly.

30

Code

Line 1. void setup() {
Line 2. pinMode(9, OUTPUT);
Line 3. pinMode(10, OUTPUT);
Line 4. pinMode(11, OUTPUT);
Line 5.
Line 6. digitalWrite(9, HIGH);
Line 7. }
Line 8.
Line 9. void loop() {
Line 10.
Line 11. digitalWrite(10, HIGH);
Line 12. digitalWrite(11, LOW);
Line 13. delay(6000);
Line 14.
Line 15. digitalWrite(10, LOW);
Line 16. digitalWrite(11, LOW);
Line 17. delay(2000);
Line 18.
Line 19. digitalWrite(10, LOW);
Line 20. digitalWrite(11, HIGH);
Line 21. delay(6000);
Line 22.
Line 23. digitalWrite(10, LOW);
Line 24. digitalWrite(11, LOW);
Line 25. delay(2000);
Line 26. }

Set pin #9, pin #10 and pin #11 as an output

When the Arduino turns on or restart, set pin #9 as HIGH (on).

This pin will be used to tell the h-bridge to be enabled. We did it

in the setup since we never need to turn it off later

Set pin #10 to HIGH (on) and pin #11 to LOW

(off) and then wait for 6 seconds. This will spin

the motor one direction

Set pin #10 to LOW (off) and pin #11 to LOW (off)

and then wait for 2 seconds. This will stop the

motor from spinning.

Set pin #10 to LOW (off) and pin #11 to HIGH

(on) and then wait for 6 seconds. This will spin

the motor in the opposite direction.

Set pin #10 to LOW (off) and pin #11 to LOW (off)

and then wait for 2 seconds. This will stop the

motor from spinning.

31

H-Bridge Using Potentiometer
Time Required: 50 minutes

In this project, we will using an H-Bridge (Model L293D) with an Arduino to control the direction of the rotation of the

motor based on the position of the potentiometer.

Pin #9 from our Arduino will be used to control the speed of the motor attached (output 5v). Pins #11 and pin #10 is used

to control which direction the motor will turn. If you have pin #11 high (output 5v) the motor will spin one direction,

while if you output high on pin #10 it will spin the other direction. The motor will not turn if both pin #10 and pin #11 is

high (outputting 5v) since you telling the h-bridge to go clockwise and counter clockwise at the same time.

The potentiometer will be used at the 12 o’clock position to stop all motor movement. If you turn the potentiometer

counterclockwise, the motor will spin in that direction as well. If you turn the potentiometer clockwise the motor will spin

in the direction as well. As you rotate the potentiometer more and more clockwise or counterclockwise, the motor will

increase in speed until you reached the limit of how far it can move in either direction.

Required Components

1x Arduino 1x Breadboard
12x Jumper

Wires

1x

Potentiometer
1x H-Bridge 1x DC Motor

32

The above diagram above is used to illustrate the movement of the motor when you rotate the potentiometer for this project.

33

Wiring

This

indented

semicircle

is used to

indicate

the top of

the IC H-

bridge

chip.

34

Code

Line 1. const int motorEnPin = 9;

Line 2. const int motorFwdPin = 10;

Line 3. const int motorBkwdPin = 11;

Line 4.

Line 5. const int potInputPin = A0;

Line 6. int inputValue = 0;

Line 7. int motorSpeed = 0;

Line 8.

Line 9. void setup() {

Line 10. pinMode(motorEnPin, OUTPUT);

Line 11. pinMode(motorFwdPin, OUTPUT);

Line 12. pinMode(motorBkwdPin, OUTPUT);

Line 13.

Line 14. pinMode(potInputPin, INPUT);

Create a constant integer variable called motorEnPin with a value

of 9 (the pin to enable the h-bridge to turn on).

Create a constant integer variable called motorFwdPin with a value of

10 (the pin is used to tell the h-bridge to move the motor clockwise).

Create a constant integer variable called motoBkwdPin with a value of 11

(the pin is used to tell the h-bridge to move the motor counterclockwise).

Create a constant integer variable called potInputPin with a value of A0

(the pin is used to read the value from the potentiometer).

Create an integer variable called inputValue with a value of 0 (this will be

used to store the current value of our potentiometer).

Create an integer variable called motorSpeed with a value of 0 (this will be

used to store the current value of how fast the motor should spin).

Set the potentiometer that is connected to potInputPin (pin #A0) as an

INPUT.

Set our pins for motorEnPin (pin #9), motorFwdPin (pin #10), motorBkwdPin

(pin #11) as an OUTPUT.

35

Line 15. Serial.begin(9600);

Line 16. }

Line 17. void loop() {

Line 18. inputValue = analogRead(potInputPin);

Line 19.

Line 20. if(inputValue >= 0 & inputValue <= 472) {

Line 21. Serial.println("Clockwise");

Line 22. digitalWrite(motorFwdPin, HIGH);

Line 23. digitalWrite(motorBkwdPin, LOW);

Line 24. motorSpeed = map(inputValue, 0, 472, 255, 0);

Line 25. }

Line 26. else if(inputValue >= 552 & inputValue <= 1023) {

Line 27. Serial.println("Counterclockwise");

Line 28. digitalWrite(motorFwdPin, LOW);

Line 29. digitalWrite(motorBkwdPin, HIGH);

Line 30. motorSpeed = map(inputValue, 552, 1023, 0, 255);

Line 31. }

Start serial communication when the Arduino boots. Set the

communication speed to 9600 baud.

Store the value from the potentiometer using analogRead

for the potInputPin (#A0) into the variable inputValue.

When the potentiometer knob input is between 0 –

472, output the Serial message “Clockwise”, set the

motorFwdPin to HIGH and the motorBkwdPin to LOW

(this will make the H-Bridge be told to go

clockwise). Store the calculated speed for the motor

to spin using the variable motorSpeed. We use the

map function to read the potentiometer so that when

the knob is reading 0, the speed will be 255 (speed is

a value between 0-255). When the potentiometer is

reading 472, set the motor speed to 0. It will then

calculate automatically the motor speed to adjust

smoothly with the input from the potentiometer.

 When the potentiometer knob input is between 552

– 1023, output the Serial message

“Counterclockwise”, set the motorFwdPin to LOW

and the motorBkwdPin to HIGH (this will make the

H-Bridge be told to go counterclockwise). Store the

calculated speed for the motor to spin using the

variable motorSpeed. We use the map function to

read the potentiometer so that when the knob is

reading 552, the speed will be 0 (speed is a value

between 0-255). When the potentiometer is reading

1023, set the motor speed to 255. It will then

calculate automatically the motor speed to adjust

smoothly with the input from the potentiometer.

36

Line 32. else {

Line 33. Serial.println("Stop");

Line 34. digitalWrite(motorFwdPin, LOW);

Line 35. digitalWrite(motorBkwdPin, LOW);

Line 36. motorSpeed = 0;

Line 37. }

Line 38. Serial.print("Input: ");

Line 39. Serial.println(inputValue);

Line 40.

Line 41. Serial.print("Speed: ");

Line 42. Serial.println(motorSpeed);

Line 43.

Line 44. analogWrite(motorEnPin, motorSpeed);

Line 45.

Line 46. delay(100);

Any other value for the potentiometer knob input

(which would be between 473 – 551), output the

Serial message “Stop”, set the motorFwdPin to

LOW and the motorBkwdPin to LOW (this will

make the H-Bridge be told to stop moving the

motor). Set the speed for the motor to 0.

Output the serial message “Input: ”, and then

output on the same line the contents of the

variable from the inputValue. Since we are using

println, this will create a line break after output

the contents of that variable.

Output the serial message “Speed: ”, and then

output on the same line the contents of the

variable from the motorSpeed. Since we are using

println, this will create a line break after output

the contents of that variable.

Set the speed of the motor. This is done by using

analogWrite to the motorEnPin (pin #9, which is

connected to the h-bridge from that pin)

outputting the number stored in motorSpeed.

 Create a delay for 100 microseconds only so we can slow

down the serial text output to make it easier to read.

37

Recommended Resources
Get these for free at the Toronto Public Library

Want to learn more about Arduinos? Here is a list of our favorite Toronto Public Library books and resources. When

using the Arduino Kit, please stick to the projects outlined in this manual. Additional projects found in the recommended

resources are for educational and entertainment purposes and are only intended for use with your personal Arduino.

http://www.Arduino.cc

The official website has great tutorials and reference

resources. The website includes information on all

commands you can do for the Arduino programming

language and examples on how to use them.

38

Learning Arduino with Peggy Fisher

This beginner course consists of two hours of video and

can be accessed for free from Lynda.com (via

tpl.ca/elearning with a valid Toronto Public Library card).

Adventures in Arduino by Becky Stewart

This book provides simple, easy-to-follow introductions

to the Arduino. It is written for 11 to 15 year olds, but

we’ve found the concepts, content, and language

engaging and applicable to adult Arduino users. Available

from Safari (via tpl.ca/elearning with a valid Toronto Public

Library card).

39

Arduino for Kids (2017) by Priya Kuber, Rishi Gaurav
Bhatnagar, Vijay Varada

This book is intended for children (ages 9 and up) and

their parents. It includes a series of fun, easy projects that

don’t require any knowledge of electronics. Available

from Safari (via tpl.ca/elearning with a valid Toronto Public

Library card).

The Maker's Guide to the Zombie Apocalypse: Defend
Your Base with Simple Circuits, Arduino, and Raspberry
Pi (2016) by Simon Monk

No one knows what the future holds, so we can’t

definitively say whether or not the Arduino projects in

this book will come in handy. What we can guarantee is

that you’ll have fun learning about Arduinos in a unique

and creative way. Available in regular print.

40

Make: Drones: Teach an Arduino to Fly by David
McGriffy

Have you ever wondered how drones work? This book

reveals drone building secrets and explains how you can

get your Arduino to fly. Available in regular print and as an

eBook from Safari (via tpl.ca/elearning with a valid Toronto

Public Library card).

The Arduino Inventor's Guide (2017) by Derek Runberg
and Brian Huang

Ready to move on from the Arduino kits and start

working on some more advanced projects? Why not

build a tiny electric piano, a desktop greenhouse, or a

colour-mixing night light? You’ll find ten fun Arduino

projects in this new eBook, available from Safari (via

tpl.ca/elearning with a valid Toronto Public Library card)

41

Arduino Playground : Geeky Projects for the
Experienced Maker (2017) by Warren Andrews

This is the perfect resource for more advanced Arduino

projects. One of our favourites is the Garage Sentry

Parking Assistant, a project that can help you pull into

your garage by setting off an alarm when you’ve gone far

enough and need to hit the brakes. Available in regular

print and as an eBook from Safari (via tpl.ca/elearning with a

valid Toronto Public Library card)

